Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 201(2): 93-103, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171489

RESUMO

The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding. The present work evaluates for the first time, the impact of secondary pions on central nervous system functionality. The fractional pion dose emanating from thicker shielded spacecraft regions could contribute up to 10% of the total absorbed radiation dose. New results from the Paul Scherrer Institute have revealed that low dose exposures to 150 MeV positive and negative pions, akin to a Mars mission, result in significant, long-lasting cognitive impairments. These surprising findings emphasize the need to carefully evaluate shielding configurations to optimize safe exposure limits for astronauts during deep space travel.


Assuntos
Radiação Cósmica , Mésons , Proteção Radiológica , Voo Espacial , Humanos , Astronave , Radiação Cósmica/efeitos adversos , Proteção Radiológica/métodos , Astronautas , Cognição , Doses de Radiação
2.
Methods Cell Biol ; 180: 177-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37890929

RESUMO

Behavioral testing is a popular and reliable method of neurocognitive assessment of rodents but the lack of standard operating procedures has led to a high variation of protocols in use. Therefore, there exists a strong need to standardize protocols for a combined behavioral platform in order to maintain consistency across institutions and assist newcomers in the field. This paper provides details on the methodology of several behavioral tasks which have been validated in identifying radiation induced cognitive impairment as well as provide guidance on timescales and best practices. The cognitive assessments outlined here are optimized for rodent studies and either target learning and memory (open field task, object in updated location, novel object recognition, object in place, and temporal order) or mood and cognition (social interaction, elevated plus maze, light dark box, forced swim test, and fear extinction). We have utilized this platform successfully in evaluating cognitive injury induced by various radiation types, doses, fractionation schedules and also with ultra-high dose rate FLASH radiotherapy. Recommended materials and software are provided as well as advice on methods of data analysis. In this way a comprehensive behavioral platform is described with broad applicability to assess cognitive endpoints critical to therapeutic outcome.


Assuntos
Comportamento Animal , Medo , Animais , Medo/psicologia , Extinção Psicológica , Natação
3.
Cancer Res Commun ; 3(4): 725-737, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37377749

RESUMO

Implementation of ultra-high dose-rate FLASH radiotherapy (FLASH-RT) is rapidly gaining traction as a unique cancer treatment modality able to dramatically minimize normal tissue toxicity while maintaining antitumor efficacy compared with standard-of-care radiotherapy at conventional dose rate (CONV-RT). The resultant improvements in the therapeutic index have sparked intense investigations in pursuit of the underlying mechanisms. As a preamble to clinical translation, we exposed non-tumor-bearing male and female mice to hypofractionated (3 × 10 Gy) whole brain FLASH- and CONV-RT to evaluate differential neurologic responses using a comprehensive panel of functional and molecular outcomes over a 6-month follow-up. In each instance, extensive and rigorous behavioral testing showed FLASH-RT to preserve cognitive indices of learning and memory that corresponded to a similar protection of synaptic plasticity as measured by long-term potentiation (LTP). These beneficial functional outcomes were not found after CONV-RT and were linked to a preservation of synaptic integrity at the molecular (synaptophysin) level and to reductions in neuroinflammation (CD68+ microglia) throughout specific brain regions known to be engaged by our selected cognitive tasks (hippocampus, medial prefrontal cortex). Ultrastructural changes in presynaptic/postsynaptic bouton (Bassoon/Homer-1 puncta) within these same regions of the brain were not found to differ in response to dose rate. With this clinically relevant dosing regimen, we provide a mechanistic blueprint from synapse to cognition detailing how FLASH-RT reduces normal tissue complications in the irradiated brain. Significance: Functional preservation of cognition and LTP after hypofractionated FLASH-RT are linked to a protection of synaptic integrity and a reduction in neuroinflammation over protracted after irradiation times.


Assuntos
Potenciação de Longa Duração , Doenças Neuroinflamatórias , Masculino , Camundongos , Feminino , Animais , Plasticidade Neuronal , Hipofracionamento da Dose de Radiação
4.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445726

RESUMO

A recognized risk of long-duration space travel arises from the elevated exposure astronauts face from galactic cosmic radiation (GCR), which is composed of a diverse array of energetic particles. There is now abundant evidence that exposures to many different charged particle GCR components within acute time frames are sufficient to induce central nervous system deficits that span from the molecular to the whole animal behavioral scale. Enhanced spacecraft shielding can lessen exposures to charged particle GCR components, but may conversely elevate neutron radiation levels. We previously observed that space-relevant neutron radiation doses, chronically delivered at dose-rates expected during planned human exploratory missions, can disrupt hippocampal neuronal excitability, perturb network long-term potentiation and negatively impact cognitive behavior. We have now determined that acute exposures to similar low doses (18 cGy) of neutron radiation can also lead to suppressed hippocampal synaptic signaling, as well as decreased learning and memory performance in male mice. Our results demonstrate that similar nervous system hazards arise from neutron irradiation regardless of the exposure time course. While not always in an identical manner, neutron irradiation disrupts many of the same central nervous system elements as acute charged particle GCR exposures. The risks arising from neutron irradiation are therefore important to consider when determining the overall hazards astronauts will face from the space radiation environment.


Assuntos
Radiação Cósmica/efeitos adversos , Hipocampo/efeitos da radiação , Nêutrons/efeitos adversos , Animais , Comportamento Animal/efeitos da radiação , Masculino , Memória/efeitos da radiação , Camundongos , Plasticidade Neuronal/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...